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ABSTRACT

Context. While Jupiter’s massive gas envelope consists mainly of hydrogen and helium, the key to understanding Jupiter’s formation
and evolution lies in the distribution of the remaining (heavy) elements. Before the Juno mission, the lack of high-precision gravity
harmonics precluded the use of statistical analyses in a robust determination of the heavy-element distribution in Jupiter’s envelope.
Aims. In this paper, we assemble the most comprehensive and diverse collection of Jupiter interior models to date and use it to study
the distribution of heavy elements in the planet’s envelope.
Methods. We apply a Bayesian statistical approach to our interior model calculations, reproducing the Juno gravitational and atmo-
spheric measurements and constraints from the deep zonal flows.
Results. Our results show that the gravity constraints lead to a deep entropy of Jupiter corresponding to a 1 bar temperature that is 5–
15 K higher than traditionally assumed. We also find that uncertainties in the equation of state are crucial when determining the amount
of heavy elements in Jupiter’s interior. Our models put an upper limit to the inner compact core of Jupiter of 7 MEarth, independently
of the structure model (with or without a dilute core) and the equation of state considered. Furthermore, we robustly demonstrate that
Jupiter’s envelope is inhomogeneous, with a heavy-element enrichment in the interior relative to the outer envelope. This implies that
heavy-element enrichment continued through the gas accretion phase, with important implications for the formation of giant planets in
our Solar System and beyond.

Key words. planets and satellites: interiors – planets and satellites: gaseous planets – planets and satellites: formation –
planets and satellites: composition

1. Introduction

The standard model of Jupiter formation starts with the accre-
tion of solids followed by a rapid gas accretion phase wherein
Jupiter’s hydrogen and helium envelope is captured from the
primitive solar nebula. In this scenario, the dominant size
of the accreted solids could be either kilometre-sized plan-
etesimals (Pollack et al. 1996) or centimetre-sized pebbles
(Lambrechts et al. 2014), with dramatic implications for for-
mation timescales and the distribution of heavy elements in
Jupiter’s envelope (Venturini & Helled 2020; Vazan et al. 2018).
In the planetesimal-driven scenario, the accretion of solids con-
tinues through the gas accretion phase and stops when all of the

planetesimals in the planet’s vicinity have been accreted. The
fragmentation and ablation of these solid planetesimals cause a
non-homogenous distribution of heavy elements in the envelope
(Alibert et al. 2018). In contrast, in the pebble-driven scenario,
the fast orbital decay of pebbles caused by gas drag provides
a continuous resupply of solid material that enriches the grow-
ing planet (Ormel et al. 2021). Nevertheless, the supply stops
once the so-called pebble-isolation mass is reached (Lambrechts
et al. 2014), after which only gas accretion continues unless or
until pebbles grow to planetesimal size. Here we seek to distin-
guish between these scenarios, analysing the internal structure
of Jupiter today and determining whether Jupiter’s envelope
harbours a non-homogeneous distribution of heavy elements.
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We explore the possibility of differentiation of the heavy ele-
ments in the envelope, testing whether this differentiation is a
natural outcome of the set of models that reproduce all observa-
tional constraints, including those provided by the recent Juno
observations.

2. Methods

2.1. Jupiter’s structure: Three-layer and dilute-core models

We constructed two contrasting sets of Jupiter interior models
and explored the largest possible ensemble of realistic models to
date that represent the interior of Jupiter. The first set of mod-
els was constructed using a three-layer Jupiter model, where
Jupiter’s interior consists of an outer H2-dominated region, an
intermediate Hmetallic-dominated region (e.g. Hubbard & Militzer
2016), and a core made of 100% heavy elements (Fig. 1a). The
second set of models was built using three layers and adding a
dilute core: a region above the inner core where the H and He
of the envelope are gradually mixed with a greater abundance of
heavy elements (Wahl et al. 2017; see our Fig. 1b). For the latter
models, we characterised the dilute core with three parameters:
the maximum mass mixing ratio of heavy elements in the diluted
core region (Zdilute), a parameter that controls the extent of the
dilute core in terms of mass (mdilute), and a parameter controlling
how steep the heavy-element gradient (δmdil) is. In the end, the
ratio of the heavy-element mass mixing between the inner core
outer boundary and the helium transition is given by

Z = Z2 +
Zdilute − Z2

2

[
1 − erf

(
m − mdilute

δmdil

)]
, (1)

with δmdil = 0.075. We tested possible variations of this parame-
ter and found that the results of the calculation are not sensitive to
the choice of δmdil. In addition, for all the models, we allowed for
an increase in the interior entropy in the helium-demixing region
by including a temperature jump (∆THe), following Hubbard &
Militzer (2016). An a posteriori examination of the models shows
that this region is convectively stable for values of this parame-
ter lower than about 2000 K (Guillot et al. 2018). The outermost
layer of the envelope in both sets of models is separated from
the inner layer of the envelope by the transition to a region of
immiscibility of helium in hydrogen (“helium rain”). The precise
location of this region is not well known, but numerical calcu-
lations (Morales et al. 2013; Schöttler et al. 2018) suggest that
the immiscibility should be located between ∼0.8 and ∼3 Mbar,
and lab experiments indicate that it may extend even deeper into
the planet (Brygoo et al. 2021). In our models, we assume a
Gaussian distribution, taking these constraints into account. We
ran Markov chain Monte Carlo (MCMC) calculations for the
two scenarios using a Bayesian statistical model (Bazot et al.
2012), wherein calculations are concentrated around the relevant
regions of the parameter space. This allows millions of solutions
(models that fit Jupiter’s observational constraints) to be eval-
uated with a feasible computational cost. More details on the
Bayesian approach are provided in the appendix.

2.2. Details on each Jupiter interior model

We calculated each Jupiter interior structure model with the
code CEPAM (Guillot & Morel 1995; Guillot et al. 2018),
which solves the equations of hydrostatic equilibrium, mass and
energy conservation, and energy transport. We performed mul-
tiple sets of MCMC runs using different equations of state.

Fig. 1. Schematic view of the Jupiter structure models used in this paper.
Panel a: three-layer model. Panel b: dilute-core model. The different
regions are indicated with arrows.

Because Jupiter is primarily composed of hydrogen and helium,
the equations of state of these two elements are fundamen-
tal when modelling its interior structure (Miguel et al. 2016).
Several equations of state have been published in the past few
years, and many uncertainties still remain (Mazevet et al. 2022).
Therefore, we repeated our calculations using several proposed
equations of state to avoid a bias in our results. We used MH13-H
(Militzer & Hubbard 2013; Miguel et al. 2016), CMS19-H
(Chabrier et al. 2019), and MLS21-H (Mazevet et al. 2022)
for the equation of state of hydrogen, and for helium we used
SCVH95-He (Saumon et al. 1995) and CMS19-He (Chabrier
et al. 2019). For the heavy elements, we used the equations of
state of a mixture of silicates (dry sand) and the one of water in
SESAME (Lyon & Johnson 1992).

Jupiter’s adiabat is prescribed by its entropy or, equivalently,
by its temperature at the 1 bar level (T1bar). Voyager radio occul-
tations (Lindal 1981) initially indicated T1bar = 165± 5 K. In situ
measurements from the Galileo probe measured, in a so-called
hot spot, a 1 bar temperature of 166.1 K (Seiff et al. 1998).
However, a reassessment of the Voyager radio occultations after
the corrected helium abundance as measured by the Galileo
probe led to temperatures at the occultation latitudes that are
3–5 K higher (Gupta et al. 2022), raising the possibility that
the Galileo probe temperature measurement may not be strictly
appropriate to the entire planet. We used a Gaussian distribution
for T1 bar centred at 165 K and with a dispersion in agreement
with these observations. Measurements by the Galileo probe and
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Fig. 2. Offsets between ToF and CMS for two subsam-
ples (MCMC models and optimised models). Left pan-
els: offsets on the gravitational moments. The dashed
black line shows the linear fit of our models. The green
dot shows the origin. The yellow star corresponds to
the linear fit of the optimised model median of ∆J2.
The pink error bars show the uncertainty of the Juno
measurements that account for the differential rotation.
The purple error bars show the uncertainty of the Juno
measurements. The green cross shows the former offsets
from Guillot et al. (2018). Right panels: residuals.

recent results by the Juno mission provide constraints for the
metallicity and helium abundance in a shallow region within
Jupiter’s H2-dominated layer. We took these constraints into
account and used a He abundance of Y1 = 0.238 (von Zahn et al.
1998) and metallicity Z1 = 1 Zsolar in our calculations (Li et al.
2020). For the Hmetallic-dominated region, we required that the
overall abundance of He be consistent with the protosolar abun-
dance (Yproto = 0.277, Serenelli et al. 2010) and allowed either
different metallicity from the H2-dominated region or the same
(the latter option for the dilute-core models).

2.3. Gravity harmonics calculation

The modelled density profiles were used to calculate the even
gravity harmonics (J2n, n = 1, . . . , 5), which were ultimately
compared with the Juno-derived values to find the models that
are consistent with the Juno observations. The even gravity har-
monics measured by Juno include contributions from both the
static background state (calculated with our interior models that
assume rigid body rotation) and dynamical processes (mostly
from the deep atmospheric zonal winds; Kaspi et al. 2017, 2018;
Kulowski et al. 2020). We can calculate the even gravity har-
monics produced from the interior density profile (Jstatic

2n ) by
subtracting the computed dynamical contributions from the Juno
measurements. Therefore, the effective gravity harmonics that
our interior model calculations must match are Jstatic

2n = JJuno
2n −

∆Jdifferential
2n (n = 1, . . . , 5), where JJuno

2n are the values provided by
Juno mission measurements (Iess et al. 2018; Durante et al. 2020)
and ∆Jdifferential

2n is the contribution to the gravity harmonics due
to differential rotation. We calculated the static component of
the gravity harmonics using the theory of figures (ToF) of fourth
order (Zharkov & Trubitsyn 1978; Nettelmann 2017) combined
with an integration of the reconstructed density structure in two
dimensions using a Gauss–Legendre quadrature (Guillot et al.
2018) or using the concentric MacLaurin spheroid (CMS) the-
ory (Hubbard 2013). Because results calculated with the CMS
method are more accurate but more computationally demanding,

in this paper the majority of the runs are made using the first
method, which allows us to perform many more runs in a shorter
time; however, we use the accuracy of the CMS method by cali-
brating the gravity harmonics obtained from the ToF to the CMS
values (Guillot et al. 2018). Because the gravity harmonics mea-
sured by Juno have reached a very high accuracy, estimating
these offsets is essential.

This calibration was done by assessing offsets (δJ2n =
J2n(ToF) − J2n(CMS)), between the gravity harmonics from the
ToF and the ones from the CMS method, using a random sam-
ple of 100 of our preferred models. We then took these models
and performed an optimisation procedure, modifying Mcore and
Z1 to perfectly fit the observational measurements of the equa-
torial radius Req and J2 – to get offsets from the most accurate
models – and then computed the offsets for this second set of
models using both methods. Figure 2 displays the offsets for both
sub-samples (models with and without the optimisation proce-
dure). Our results show a correlation between the offsets, where
δJ4 and δJ6 depend strongly on δJ2. Higher order gravitational
moments (δJ8, δJ10) are less dependent on δJ2. Thanks to these
linear relationships, we can quantify the impact of an offset on J2
on the offsets of the higher order gravitational moments. We also
note that the residuals are very small compared to the Juno error
bars that consider differential rotation (Fig. 3). We calculated
the median value of δJ2 among the 100 optimised models and
calculated the higher order offsets using the linear relationships.
Table 1 lists the offsets found; we note that previous offsets from
Guillot et al. (2018) lie almost on the linear regression curves,
showing that our offsets have changed very slightly and that our
calculations are thus robust.

2.4. Dynamical contribution to the gravity harmonics

In order to provide the plausible range of dynamical contribu-
tion to the even gravity harmonics (∆Jdifferential

n ), we considered
the widest possible range of flow profiles that still matched
the gravity harmonics. The Juno gravity measurements revealed
significant north-south asymmetries in Jupiter’s gravity field
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Fig. 3. Results for four sets of 100 models: random mod-
els from our preferred MCMC runs, optimised models
with new offsets, optimised models with former off-
sets from Guillot et al. (2018), and optimised models
with CMS calculation. Top left panel: equatorial radius
vs. J2. Top right panel: core mass vs. fraction of ices
in the molecular hydrogen layer. Grey lines show the
pairing between each model and its optimised ver-
sion. Middle and bottom panels: gravitational moments.
The black error bars show the uncertainty of the Juno
measurements that account for the differential rotation.

Table 1. Offsets between ToF and CMS.

δJ2 = 0 δJ2 = median(δJ2) Guillot et al. (2018) Juno error Juno w/diff rot error

δJ2 × 106 0 1.78621 5.8554 0.014 0.35425
δJ4 × 106 0.0822626 –0.0604954 –0.4045 0.004 0.0836
δJ6 × 106 –0.0799887 –0.0674861 –0.0375 0.009 0.0768
δJ8 × 106 0.16909 0.167862 0.1641 0.025 0.0624
δJ10 × 106 –0.0297133 –0.0295843 –0.0291 0.069 0.0423
δJ12 × 106 0.004131 0.00411681 0.175

Notes. The first column indicates the offsets for a null value of δJ2, the second (values highlighted) shows offsets estimated after picking the
median value of δJ2 (the new set of offsets used in our calculations), and then we show previous offsets calculated in Guillot et al. (2018) and
finally the error bars from Juno with and without accounting for differential rotation.

(Iess et al. 2018). Such hemispherical asymmetries (represented
through the measurement of J3, J5, J7, and J9) can only be due
to interior flows. The resemblance of the measured gravity sig-
nature of the flow to that obtained by extending the east-west
(zonal) observed cloud-level winds inwards (Kaspi 2013) sug-
gested that not only do the flows reach deep (∼3000 km, where
the pressure is ∼100 kbar), but that the flow pattern is generally
similar to the flow profile at the cloud level (Kaspi et al. 2018,
2020). Although variations from this profile at depth are pos-
sible, it is statistically unlikely that the deep flow profile varies
significantly, and it will still match all four measured odd grav-
ity harmonics (Tollefson et al. 2017; Duer et al. 2020). Any deep
flow profile will also have a signature in the even gravity har-
monics, providing a dynamical contribution to the measurements
beyond that coming from the interior density profile.

To determine such a dynamical contribution to the even grav-
ity harmonics, we retrieved the wind field from the gravity field
data using an adjoint inverse technique (Galanti et al. 2016,
2017). We allowed the zonal wind structure to vary both in its
latitudinal profile (from the observed cloud-level wind structure)
and its vertical profile (Galanti et al. 2019). This was achieved
through randomly varying ∆Jdifferential

2n , n = 1, 5 within a range of

30σ of the Juno values (we chose a large range because it is
not known what fraction of the even harmonic measurements
comes from the dynamics; Kaspi et al. 2017). Every profile was
extended inwards along the direction of the spin axis, assum-
ing a radial decay profile; then, given that the flow must be in
thermal wind balance with the density field, the balancing den-
sity field was integrated to give the dynamical gravity harmonics
(Kaspi et al. 2016). For each of the 3000 cases, we calculated
the best fitting wind profile that is also consistent with the odd
gravity harmonics, thus matching seven gravity values for each
case (odd harmonics JJuno

3 to JJuno
9 and even differential con-

tributions ∆Jdifferential
2 to ∆Jdifferential

10 ). Once all solutions were
obtained (grey profiles in Figs. 4a and b for the meridional and
vertical profiles, respectively), we selected as plausible solutions
those where the meridional profile of the zonal wind was within
20 m s−1 of the observed cloud-level profile (black profiles in
Figs. 4a, b). This uncertainty is consistent with the measurement
error (Kaspi et al. 2020). The resulting range of the physically
plausible dynamical contribution to the even gravity harmon-
ics is: ∆Jdifferential

2 = 1.039± 0.354, ∆Jdifferential
4 =−0.076± 0.083,

∆Jdifferential
6 = 0.016 ± 0.076, ∆Jdifferential

8 = 0.053 ± 0.062, and
∆Jdifferential

10 =−0.080± 0.042, (where ∆Jdifferential
2n /10−6).
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Fig. 4. Contribution to the gravity harmonics from the deep atmospheric
flow. Shown are the solutions for the cloud-level wind (a), the radial
decay profile (b), and the wind-induced even gravity harmonics (c– f ).
The grey lines and dots show all of the 3000 cases, and the black lines
and dots show the plausible solutions. The red line in (a) shows the
observed cloud-level wind, and the green line in (b) shows the solution
in Kaspi et al. (2018). The red crosses in (e– f ) show the expected mean
value of the differential contribution.

3. Results

3.1. Envelope inhomogeneity

All of our models reproduce J2 and Jupiter’s radius, and Figs. 5
(panels a–c) and 6 (panels a–c) show the values of J4 and J6
for the MCMC solutions in the case of a three-layer model and
with a dilute-core model, respectively (the other J2n are shown
in Methods). We also note that all our models are consistent with
the metallicities observed by Juno and the helium abundance in
Jupiter’s atmosphere as measured by the Galileo probe. When
analysing the distribution of heavy elements in the envelope,
we considered the envelope to consist of the H2- and Hmetallic-
dominated layers for the three-layer models and to consist of
the H2- and Hmetallic-dominated layers and the dilute core for
the dilute-core models. In Fig. 5d we show results of the three-
layer models, and we see that the difference in heavy elements
between the H2- and Hmetallic-dominated layers (∆Z = Z2 − Z1) is
larger than zero for all models calculated with the MH13 and
MLS20 equations of state. For the CMS19 equation of state, we
find that the probability of finding models with ∆Z > 0 is 97.6%.

Figure 6d shows the difference in heavy elements within the
envelope for models with a dilute core. In this case, we calcu-
lated the difference in heavy elements between the H2-dominated
and dilute-core regions (∆Z = Zdilute − Z1). We see that all mod-
els have ∆Z > 0, independently of the equation of state used in
the calculations. Our results robustly demonstrate that Jupiter’s
envelope is not homogeneous: the external layer of the enve-
lope is depleted of heavy elements compared to the inner parts
of the envelope. This result is independent of both the models
adopted for the interior of the planet and the equation of state
used. We note, however, that different equations of state lead to
different distributions of the heavy elements in the interior of the
planet.

3.2. Distribution and mass of the heavy elements

An analysis of the mass of heavy elements in the different layers
for a random sample of 1000 of our models is shown in Fig. 7. We
see that the total mass of heavy elements (MZtotal ) varies between
11 and 30 MEarth, with differences resulting from the choice of
the equation of state. Calculations done with the MH13 equa-
tion of state have 18 < MZtotal < 30 MEarth, models with MLS21
have 14 < MZtotal < 24 MEarth, and models with CMS19 have
11 < MZtotal < 18 MEarth, independently of the model of Jupiter
adopted (three layers or dilute core). For the three-layer models,
the differences mostly arise from discrepancies in the mass of
heavy elements in the Hmetallic-dominated region (MZ2 ), which
varies between 2 and 23 MEarth depending on the equation of
state. For models with a dilute core, the differences are mostly
due to differences in the mass of heavy elements in the dilute-
core region (MZdilute ), which is found to vary between 1 and
25 MEarth depending on the equation of state adopted in the
calculation. The mass of heavy elements in the H2-dominated
region (MZ1 ) is quite similar for models with different equations
of state, independently of the model adopted for Jupiter. This is
expected given the prior used to match the observational con-
straints from the Juno and Galileo missions. Regarding the inner
core, we find that it varies between 0 and 7 MEarth for all models,
with its exact value depending on the model adopted for Jupiter’s
interior. The three-layer models have Mcore ' 6 MEarth, indepen-
dently of the equation of state adopted. Conversely, we see two
groups of solutions for models with a dilute core: a group with
inner core masses between 3 and 6 MEarth and another group with
small masses of up to 2 MEarth.

Interestingly, models tend to have temperatures at 1 bar going
from ∼169 to ∼188 K for the three-layer models to values of
between ∼165 and ∼182 K for the dilute-core models, depend-
ing on the equation of state adopted (see Sect. 4). While these
values are high compared to observations by the Galileo probe
(166.1 K; Seiff et al. 1998), it is not clear whether those in situ
measurements represent the typical 1 bar temperature on Jupiter
because of latitudinal variability, which may exist to a limited
extent (Fletcher et al. 2020). Furthermore, a reassessment of
the Galileo probe data led to an increase in the temperature of
'4 K (Gupta et al. 2022), and, additionally, the possibility of
super-adiabaticity in the interior (Leconte et al. 2017; Guillot
et al. 2020) could yield a deep entropy corresponding to a
temperature a few degrees higher than the measured value at
1 bar. In all cases, dilute-core models have temperatures more
in agreement with the expectations given the values observed
and the uncertainties in this parameter. Regarding the separa-
tion pressure for the immiscibility of helium in hydrogen, our
values are always close to 3 Mbar (see the appendix), which is
in agreement with the higher limit of numerical calculations
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Fig. 5. Details of models with three lay-
ers. Panels a, b, and c: J4 vs. J6 for
three-layer models calculated using dif-
ferent equations of state for H, indicated
in the figure. Cyan squares show the
Juno measurements (JJuno

2n ), and gravita-
tional harmonics corrected by differential
rotation – the ones to match with our inte-
rior models (Jstatic

2n ) – are shown in red.
Panel d: histogram showing the differ-
ence in heavy elements (∆Z = Z2 − Z1)
between the Hmetallic- and H2-dominated
layers.

Fig. 6. Specifics of models with dilute
cores. Panels a, b, and c: J4 vs. J6
obtained considering different equations
of state for H. The Juno measurement
(JJuno

2n ) is indicated with the cyan square.
The effective gravity harmonics to be
matched by our interior models (Jstatic

2n )
are shown in red. Panel d: histogram that
shows the difference in heavy elements
(∆Z = Zdilute−Z1) between the dilute-core
region and the H2-dominated layer.

(Morales et al. 2013; Schöttler et al. 2018) and more in agree-
ment with recent laboratory experiments estimations (Brygoo
et al. 2021).

3.3. Comparison with previous models

In this paper we perform a large exploration of the parameter
space. We find that our results include most other individual
models presented in other works.

Dilute-core models were first modelled by Wahl et al. (2017),
who, using the MH13 equation of state, found a value of Mcore +
Mdilute between 10 and 24 MEarth and MZtotal of 24–27 MEarth.
These results are consistent with our results, even though most
of them have sub-solar atmospheric metallicities.

Ni (2019) performed four-layer models using the MH13 and
CMS19 equations of state. They found a range of Mcore + Mdilcore
of 6.5–27 MEarth and MZtotal of 24–28 MEarth with the MH13 equa-
tion of state and Mcore + Mdilcore of 3–12 MEarth and MZtotal of
8–12 MEarth with the CMS19 equation of state. For both equa-
tions of state, the results are in good qualitative agreement with
ours, even though, in this case again, their optimisation led to
sub-solar atmospheric metallicities as opposed to our results,
where Z1 = 1 Zsolar.

Debras & Chabrier (2019) imposed the constraint of a mini-
mum atmospheric metallicity Z = 0.02. They found that in order
to fit this and all other constraints using the CMS19 equation of
state, an inward decrease of the abundance of heavy elements
between the H2- and Hmetallic-dominated regions was required.

A18, page 6 of 16



Y. Miguel et al.: Jupiter’s inhomogeneous envelope

0

0.5

1

1.5

2

2.5

10 15 20 25 30 35

M
Z 1
/M

Ea
rth

MZtotal/MEarth

3-layer model Dilute core model

(a)

(b)

(c)

(d)

(e)

(f)

(g)

0

0.5

1

1.5

2

2.5

10 15 20 25 30

M
Z 1
/M

Ea
rth

MZtotal/MEarth

MH13
CMS19
MLS20

0
0.5
1

1.5
2

2.5
3

3.5

10 15 20 25 30

M
Z 2
/M

Ea
rth

MZtotal/MEarth

0

5

10

15

20

25

10 15 20 25 30

M
Z d

ilu
te
/M

Ea
rth

MZtotal/MEarth

0
1
2
3
4
5
6
7

10 15 20 25 30

M
co
re
/M

Ea
rth

MZtotal/MEarth

0

5

10

15

20

25

10 15 20 25 30

M
Z 2
/M

Ea
rth

MZtotal/MEarth

0

1

2

3

4

5

6

7

10 15 20 25 30

M
co
re
/M

Ea
rth

MZtotal/MEarth

Fig. 7. Mass of heavy elements
in the different layers as a func-
tion of the total mass of heavy
elements in Jupiter for a random
sample of 1000 models extracted
from our three-layer models (a, b,
and c) and from models with a
dilute core (d, e, f , and g). Dif-
ferent colours show models calcu-
lated with different equations of
state. Panels a and d show the
mass in the H2-dominated region
in the y-axis, panels b and e show
the mass in the Hmetallic-dominated
region, panel f shows the mass in
the dilute core, and panels c and g
show the mass in the inner core.

We also find these types of solutions when using the CMS19
equation of state and three-layer models (Fig. 5), but, since they
represent only 2.4% of our sample, we find it to be unlikely. The
MZtotal found by Debras & Chabrier (2019) are 25–30 and 40–
45 MEarth for models without and with inner cores, respectively.
Our results with CMS19 always led to considerably smaller val-
ues. A similar discrepancy with the Debras & Chabrier (2019)
study is found by Nettelmann et al. (2021).

Nettelmann et al. (2021) used CMS19 and dilute-core mod-
els. They found Mcore of up to 3.8 MEarth and MZtotal up to
13 MEarth, comparable to our results. We note that in Nettelmann
et al. (2021) the authors calculate the gravitational harmonics
using an expansion of the ToF of seventh order, different from
the method used here (Sect. 2.4). Similar to our conclusions,
they also find that higher temperatures at 1 bar help in reaching
higher metallicities in the atmosphere. Their models have sepa-
ration pressures between the H2- and Hmetallic-dominated regions
close to 6 Mbar, while our models use separation pressures of
around 3 Mbar.

4. Conclusions

This study comprehensively reproduces observational con-
straints from the Juno measurements (the even and odd gravity
harmonics and water abundance in the atmosphere), along with
helium measurements from the Galileo probe, exploring dif-
ferent models for Jupiter’s interior and considering all recent
equations of state. We show that the gravity constraints point to
a deep entropy of Jupiter that corresponds to a 1 bar temperature
that is higher than traditionally assumed (i.e. 170–180 K rather
than 166 K). We robustly demonstrate that the heavy-element
abundance is not homogeneous in Jupiter’s envelope. Our results
imply that Jupiter continued to accrete heavy elements in large
amounts while its hydrogen-helium envelope was growing, con-
trary to predictions based on the pebble-isolation mass in its
simplest incarnation (Lambrechts et al. 2014), favouring instead
planetesimal-based or more complex hybrid models (Alibert

et al. 2018; Guilera et al. 2020). Furthermore, the envelope did
not mix completely during the planet’s subsequent evolution,
not even when Jupiter was young and hot (Vazan et al. 2018).
Our result clearly shows the need for further exploration of non-
adiabatic interior models for the giant planets, and it provides
a base example for exoplanets: a non-homogeneous envelope
implies that the metallicity observed is a lower limit to the planet
bulk metallicity. Therefore, metallicities inferred from remote
atmospheric observations in exoplanets might not represent the
bulk metallicity of the planet. Moreover, we demonstrate that
knowledge of the equation of state is crucial in determining the
mass of heavy elements in the interior of Jupiter, and we put
important constraints on Jupiter’s inner core, which is found to
be up to 7 MEarth, a result that is independent of the interior
model and equation of state adopted in the calculations.
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Appendix A: Bayesian statistical model
Taking into account the uncertainties in the equation of state, the
temperature at 1 bar, the pressure where helium-rain happens,
and the error bars on the measurements themselves, we employed
a Bayesian statistical approach to explore a large ensemble of
Jupiter models and find which are the possible scenarios for
Jupiter’s internal structure that fit all observational constraints.
The parameters of CEPAM we allowed to vary are

θ =

{
[Mcore,Zrock

2 ,Zice
2 ,T1bar, PHe,∆THe] three-layer

[Mcore,Zrock
dilute,Z

ice
dilute,mdilute,T1bar, PHe,∆THe] dilute-core,

(A.1)

and the data we allowed to vary are

X = [J static
2 , J static

4 , J static
6 , J static

8 , J static
10 ,Robs

eq ] (A.2)

The quantity of interest is the posterior density function of
the parameters that are conditional on the data, p(θ|X). Bayes’
theorem tells us that the posterior density function is com-
pletely specified by the likelihood, p(X|θ), and the prior density
function, p(θ), through the relation

p(θ|X) ∝ p(θ)p(X|θ). (A.3)

The likelihood is the probability density of the data, which is
conditional on the parameters. In general, it is not a probability
density for the parameter. The prior density encodes the infor-
mation we have on the parameters before the inference processes
(e.g. theoretical limits and previous measurements).

It is possible, under some assumptions, to write analytical
forms for the likelihood and the prior. To define the former, we
first assumed an additive statistical model,

X = (θ) + ε. (A.4)

Here  is a mapping from the space of parameters to the space
of observables. In practice, it represents our code solving the
equations of planetary structure. The vector ε represent a random
noise. The distribution of this noise is thus the distribution of
X − (θ). We assume now that the distribution of ε is normal and
that its covariance matrix is diagonal. The likelihood function is
therefore

p(X|θ) ∝
∏

i

exp
− (Xi − i(θ))2

2σ2
i

. (A.5)

The σ2
i represent the diagonal elements of the covariance matrix

and are given by the observational uncertainties corresponding
to the components of X. The adopted values are given in Tables
A.1 and A.2.

In order to simplify the prior density, we assumed that all
parameters are independent. It can thus be written as the product
of univariate densities,

p(θ) ∝
∏

i

pi(θi). (A.6)

The chosen priors are given in Tables A.1 and A.2. The bound-
aries of all priors were chosen using a test-and-trial stage,
ensuring that they were wide enough to avoid numerical issues
during the sampling stage and that they were narrow enough so
that the parameter space to sample is not too vast.

We used an affine invariant MCMC algorithm (Christen
& Fox 2010; Goodman & Weare 2010) to sample the space
of parameters and to approximate the posterior probability

functions. It uses the relative positions in the parameter space
of several Markov chains, run in parallel, to efficiently adapt
the proposition law. Using 512 walkers, we found that good
convergence for the MCMC simulations can be reached with
approximately 10000 iterations of the algorithm.

Figures A.1, A.2, A.3, A.4, A.5, and A.6 show the corner
plots with all the parameters that result from the MCMC cal-
culations for the six cases considered (see the main text for an
extended discussion on the results).
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Table A.1: Parameters explored in our MCMC calculations for three-layer models. The parameter is given in the first column, the
corresponding distribution in the second, and the lower and upper bounds in the third and fourth. When relevant, the mean and the
standard deviation of the truncated normal are given in columns five and six. Yproto=0.277, Y1=0.238, and Z1=0.0153.

Parameter Distribution Lower bound Upper bound µ σ

Mcore (MJup) Uniform 0 0.075 – –
Zrock

2 Uniform 0 0.5 – –
Zice

2 Uniform 0 0.5 – –
T1bar (K) Normal 135 215 165 4
PHe (Mbar) Normal 0.8 9 3 0.5
∆THe (K) Uniform 0 2000 – –

Table A.2: Parameters explored in our MCMC calculations for dilute-core models. The parameter is given in the first column, the
corresponding distribution in the second, and the lower and upper bounds in the third and fourth. When relevant, the mean and the
standard deviation of the truncated normal are given in columns five and six. Yproto = 0.277, YH2 = 0.238, Z1 = 0.0153, and
Z2 = 0.0153.

.

Parameter Distribution Lower bound Upper bound µ σ

Minner−core (MJup) Uniform 0 0.075 – –
Zrock

dilute Uniform 0 0.5 – –
Zice

dilute Uniform 0 0.5 – –
mdilute Uniform 0 0.6 – –
T1bar (K) Normal 135 215 165 4
PHe (Mbar) Normal 0.8 9 3 0.5
∆THe (K) Uniform 0 2000 – –
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Fig. A.1: MCMC corner plot showing the posterior distribution of variables obtained with the three-layer model and the MH13
equation of state. Red points with error bars show the observed parameters as a reference.
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Fig. A.2: Posterior distribution results of the MCMC runs with three layers and the CMS19 equation of state. Observed parameters
are indicated with the red points.
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Fig. A.3: Distribution results of the MCMC runs with three layers and the MLS20 equation of state.
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Fig. A.4: Corner plot resulting from the runs with the dilute-core model and the MH13 equation of state. Red dots show the observed
parameters.
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Fig. A.5: Distribution of different parameters resulting from the runs with the dilute-core model and the CMS19 equation of state.
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Fig. A.6: Resulting distributions obtained with the dilute-core model and the MLS20 equation of state.
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