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Abstract. At this pointin time, two major areas of physics, statidtiv&chanics and quantum me-
chanics, rest on the foundations of probability and entrdpg last century saw several significant
fundamental advances in our understanding of the proceisges&nce, which make it clear that
these are inferential theories. That is, rather than bettegaription of the behavior of the universe,
these theories describe how observers can make optimatfioed about the universe. In such a
picture, information plays a critical role. What is morehstlittle clues, such as the fact that black
holes have entropy, continue to suggest that informatifumdamental to physics in general.

In the last decade, our fundamental understanding of pitityabeory has led to a Bayesian
revolution. In addition, we have come to recognize that thenfiations go far deeper and that Cox’s
approach of generalizing a Boolean algebra to a probalsiityulus is the first specific example
of the more fundamental idea of assigning valuations toiglgHordered sets. By considering
this as a natural way to introduce quantification to the marelamental notion of ordering, one
obtains an entirely new way of deriving physical laws. | wilfroduce this new way of thinking by
demonstrating how one can quantify partially-orderedaetk in the process, derive physical laws.
The implication is that physical law does not reflect the oidehe universe, instead it is derived
from the order imposed by our description of the universfarmation physics, which is based on
understanding the ways in which we baphantifyandprocessnformation about the world around
us, is a fundamentally new approach to science.
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“Measure what is measurable, and make measurable what$eriot
Galileo Galilei (1564-1642)

INTRODUCTION

In the last century, there were three individuals whosesdew®olutionized the way we
view information and probability. The first of these indivals was Claude Shannon
who, while in graduate school, realized that Boolean algebuld be used to simplify
telephone networks. This insight paved the way for digitahputers, which clearly
have revolutionized all aspects of human society. Howetsalso led to a more subtle
revolution based on Shannon’s quantification of infornrati@nsmitted by a commu-
nication channel. Shannon’s information took the curicursifof entropy [1], which at
the time was believed to be a physical property of a thermanhya system.

Around the same time, a physicist, Richard Threlkeld Coxlished a paper where
he obtained probability theory as a unique quantificatiordedrees of plausibility
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deriving from a generalization of Boolean algebra [2]. T thay, Cox’s results are

not fully appreciated by the scientific community. His apguio forms a foundation for

probability theory that stands alongside of the measueertitic foundation provided

by Kolmogorov. While Kolmogorov's approach is founded iaditional mathematical

rigor, Cox’s approach relies on a purpose-driven genextidia, which is perhaps more
satisfying to physicists, but less so to mathematiciansvéver, the motivation behind

the specific generalization that Cox proposes gmeaningo the concept of probability,

which is something that Kolmogorov’'s approach lacks. As é&sgns, we often view

probabilities as degrees of plausibility, or degrees oiglhehnd many of us have come
to find Cox’s views quite natural.

Edwin T. Jaynes discovered Shannon’s paper in the Prindibt@ny, and as he says,
he disappeared for about a week [3]. Upon re-emerging, hiargelcto anyone who
would listen that this was the greatest piece of work sineediscovery of the Dirac
equation. Jaynes writes,

It's almost impossible to describe the psychological dff#cseeing our old

familiar expression for entropy derived in a completely ngay, and then

applied with great success to problems of engineering wéypgarently have
no relation to thermodynamics. But all of the inequalitiebjch are usually
associated with the second law of thermodynamics, turnmhetstatements
of the greatest practical usefulness in engineering pnobldt seemed to me
that there must be something pretty important that we cceddnl from this

situation. [3, p. 3]

Many of the early attempts to employ information theory irygihs were based on
making analogies between the communication theory anigtstat mechanics. Jaynes
realized that the connection was not in the form of a simpéagy, but was something
far more subtle. He writes

the essential content of both statistical mechanics andmaancation theory,
of course, does not lie in the equations; it lies in the idéas lead to those
equations. [3, p. 4]

Jaynes continues by writing

the job as | saw it was not to try to invent any fancy new mathasaThat
would presumably come later if we were successful. The job wdind the
viewpointfrom which we could see that the reasoning behind commuaitat
theory and statistical mechanics was really the same. B, p.

This critical insight will be relevant again when we look atending these ideas to
guantum mechanics and beyond.

Jaynes was also aware of Cox’s work in 1956 when he gave higésocon Probability
Theory in Science and Engineering. Jaynes appreciated@pproach as it made clear
that probability quantified a state of belief about a phylssgatem rather than the state
of the physical system itself. He recognized that the lattewpoint, led to potential
misconceptions when probability theory was applied in pts/S/NVhile he was clearly
convinced of the interpretation of probability as a degreplausibility, he, like many



of us, was not satisfied with Cox’s derivation of the produderJaynes writes

| might say that | am not entirely satisfied with the argumdnatt twe went
through to get this; not because I think its wrong, but beedukink it is too
long. The final result we get is so simple that there must benalsr way of
deriving it; but | haven’t found it. [3, p. 35]

A year after his lectures on the topic, Jaynes publisheddpgprevealing the ideas be-
hind both communication theory and statistical mechambs;h results in the principle

of maximum entropy [3, pp. 110—151], [4]. Since the entropyaitifies the degree of
uncertainty in a probability distribution, assigning a Ipability that maximizes the en-

tropy subject to a set of constraints amounts to using thenmédtion provided by the

known constraints, while being careful not to inadvertgagsume too much. Jaynes’
maximum entropy principle provided the justification thabks so carefully avoided in

his works on statistical mechanics to ensure acceptance.

With the benefit of the insights provided by these three ildials, we have come
to view probability, entropy and information in a new ligitrobability and entropy
describe states of knowledge about systems—not the syttemselves. What is more,
we now realize that information acts a constraint on oureieliFree from the previous
confusion surrounding probability, entropy and inforroatiand the misconceptions that
ensue, we can take these nielgasand re-examine the laws of physics. Several of us
from this community have been doing just that. In additioa toore clear understanding
of statistical mechanics we have seen the principle of masirentropy used to derive
properties of systems ranging from the physics of foam [Sheophysics of planetary
atmospheres [6]. More profound perhaps is Ariel Catichavgestigation of entropic
dynamics [7] where he is working to utilize maximum entropyderive the dynamical
behavior of systems ranging from Newtonian mechanics [gu@ntum mechanics [9].

Inspired by Cox, | have been working to understand how tovdecalculi from
algebras in general by selecting consistent quantificattvemes for partially-ordered
sets and lattices. At one level, this more fundamental wstdieding has resulted in
a much simpler derivation of the product rule that might heeen more to Jaynes’
liking. However, at a deeper level, we now understand howsitamts imposed by
ordering relations can result in the derivation of physlaals. This recently has been
demonstrated with a novel derivation of the complex arittiensn Feynman’s path
integral approach to quantum mechanics [10, 11] as well asrizadion of special
relativity from a partial order on a set of events [12]. Eatthese examples is related to
information in a different way. In some examples the conoedb information is direct
as we consider a partial order on states of knowledge thessdHowever, we have
also employed these ideas by considering the partial ond¢mrises from the way that
events can be informed about one another or the partial trdearises from composing
sequences of measurements aimed at gaining information.

In this tutorial, which is still very much a work in progredswill introduce this
new way of thinking by explaining how one can derive physieals by quantifying
partially-ordered sets. The implication is that physi@ Idoes not reflect the order
in the universe, instead it is derived from the order impdsgdur description of the
universe. This occurs both through the actgjoantificationof information (which |
will discuss here) angrocessingof information, which is related to the use of entropy



and probability. We have now demonstrated these ideas lyirtpa surprising amount
of old physics. New physics now awaits as we enter this newtiio of Information
Physics.

Order Theory, Posets, L atticesand Algebras

While group theory has become an essential tool for thexalgthysics, order theory
remains entirely overlooked. At the most fundamental legedup theory is concerned
with equivalence relations among partitioned sets, wiseceder theory is concerned
with ordering relations among ordered sets. In this serssethwo theories stand side-
by-side and both can place extremely strong constraintshysigal theories. | will
use these theories in concert with one another. First, I @lif on ordering relations
to obtain algebraic operations that have specific symmetpepties. | will then use
these symmetries to place strong constraints on any quahdiéscription. The resulting
constraints correspond to the physical laws.

| begin by introducing the concept of a binary ordering lielatind a partially-ordered
set. Two elements of a set are ordered by comparing themdingdp a binary ordering
relation, generically denoted and readis included by The simplest example is the
ordering of the integers according to the usual meaninge$yfmbol< ‘is less than or
equal td. This results in a totally ordered structure callechain(Fig. 1A). To illustrate
the hierarchy, we simply draw elemedtabove elemenf if A < B and connect them
with a line if there does not exist an elemehin the set such thak < X <B.

In some cases, elements of the set are incomparable to otieegras in the popular
example of comparing apples and oranges. A set of incomigaeddments is called
antichain | illustrate this in Figure 1B with a set of card suits whehe elements are
placed side-by-side to indicate that no element includg#mer.

More interesting examples involve both inclusion and inpanability, which is why
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FIGURE 1. Three basic examples of posets. (A) The integers orderetidydual< form achain
The element 2 is drawn above 1 since<R2, and they are connected by a line because 2 covers 1 in
the sense that there is no integebetween 2 and 1 such that<lx < 2. (B) The four card suits are
incomparable under a wide variety of card game rules and a& tliem side-by-side to express this.
This configuration is called aantichain (C) The set of partitions of three elemeatd andc ordered by
partition containment forms a more complex poset that etehiioth chain and antichain behavior. One
chain consists of the elemergb|c, albc, andabcsince each successive partition contains the previous.
The elements|bc, bjac, andc|ab form an antichain because not one of these three partitiongins
another.
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FIGURE 2. The poset on the left is a simple lattice, which illustrates jpin v and the meet. The
poset on the right is not a lattice since the pair of elememthe bottom do not have a unique least upper
bound. Similarly, the pair of elements at the top do not hawrique greatest lower bound.

we refer to these structures in generalpastially ordered setsor posetsfor short.
Figure 1C illustrates the poset that results from partitigrthree objects. One could
consider all three objects togethayc or each separateBib|c. These objects can also
be partitioned in three waysgjbc, b|ac or c|ab. Any two partitions from this set can be
compared according to a relation that decides whether origigra includes another.
For example, the partitioabcincludes the partitiorab|c since it can be obtained by
simply sub-dividingabcinto three separate cells. However, the partitiojad anda|bc
are incomparable since, for example, there is no way to stiledthe partitionc|ab to
obtain the partitioralbc.

Given a set of elements in a poset, thgper bounds the set of elements that contain
each of the elements of the set. For example, the upper bduine partitionc|abin Fig.
1C is the sefabc}. Given a pair of elementsandy, the least element of their upper
bound is called th@in, which is denotec V' y. Thelower boundof a set of elements is
defined dually by considering all the elements included lmhe# the elements of the
set. Given a pair of elementsaandy, the greatest element of their lower bound is called
the meet which is denote&k A y. A lattice is a partially ordered set where each pair of
elements has a unique meet and a unique join (Fig. 2). Gralphithe join can be found
by starting at both elements and following the lines upwantd they first intersect. The
meet is found similarly by moving downward. There often eglements that are not
formed from the join of any pair of elements. These elemem€alledjoin-irreducible
elementsMeet-irreducible elementsre defined similarly. For example, the partitions
a|bc, bjacor clab cannot be formed by joining any other pair of partitions ametéfore
are join-irreducible. In this case, these elements areraést-irreducible.

We can choose to view the join and meet as algebraic opesatiat take any two
lattice elements to a unique third lattice element. From pierspective, the lattice is an
algebra. This results in both a structural and operatioaedgective which are related
by a set of equations callegbnsistency relations

XVy=y
X<y = XAY = X (1)

In short, a lattice is an algebra. Where an algebra consaleet of elements along
with a set of operations that takes one or more elements tin@anelement, the lattice
considers a set of elements along with a binary orderingioal#hat sets up a hierarchy
among the elements. The algebraic perspective is opeahtiwhereas the lattice per-



spective is structural. Both the operational and struttetationships among elements
are useful.

Given a specific lattice, we find that the consistency refeticesult in a specific
algebraic identity. For example, the integers ordered leyusual less than or equal
to’ leads to

max(x,y) =y
X<y — min(x,y) = x (2)
whereas the positive integers ordered tiyides leads to
lcm(x,y) =y
X = 3
Yl ged(x,y) = X )
Sets ordered by the usu# ‘a subset dfleads to
XUy=y
xCy = XAy = X (4)

Such examples highlight the generality of the order-thioegpproach.

QUANTIFICATION

There are many ways to quantify a poset. Here | will descrilmeesof the ways that we
have been exploring [13, 14, 12]: valuations, bi-valuaticaand projections. However, |
will leave a more general discussion of the pair formalisng@intum mechanics and
the origin of the complex sum and product rules as describ¢iili] to a future work.
It is important to keep in mind that the quantification tecfugs | will cover does not
comprise an exhaustive list, as we are only beginning tocegphe possibilities.

We begin by considering the quantification of lattices. W sdge that this is equiva-
lent to extending an algebra to a calculus by defining funstibat take lattice elements
to real numbers. Such functions enable oneuantifythe relationships between the
lattice elements. This leads to probability theory on thda of logical statements and
information theory on the partition sublattice of questi¢iv].

Valuations and Bi-valuations

A valuationv is a function that takes a single lattice elemert L to a real number
v(X) in a way that respects the partial order, so tha) < v(y) iff x <y. This means
that the lattice structure imposes constraints on the tialuassignments, which can be
expressed as a set of constraint equations.

The valuation assigned to elementan be defined with respect to a second lattice
elementy called thecontext The result is a function called a bi-valuatianx | y) =
wy(X), which takes two lattice elementsandy to a real number. Here a solidus is used
as an argument separator so that one regesy) as the degree to whighincludesx.

In the following sections, | consider three operations than be performed on lat-
tices, each of which obeys associativity. The symmetriésbebed by associativity im-
pose strong constraints on quantification, namely addjtivihis, in turn, constrains
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FIGURE 3. The poset on the left is used to establish the additive natfutlee valuation. The poset in
the center is used to establish the sum rule for the lattiggeiveral. The cartoon on the right illustrates
the symmetry of the sum rule. The sum of the valuations of taments at the top and bottom of the
diamond equals the sum of the valuations of the elementseoright and left sides. These dashed lines
conveniently form a plus sign reminding us of the sum rule.

valuation and bi-valuation assignments. The first two djp@ng, the lattice join and the
lattice product, are associated with the lattice strucaune thus impose the same con-
straints on both the valuation and bi-valuation assignsjemiereas the last symmetry,
associativity of context, is specific to bi-valuations.

The Lattice Join

| now show that associativity of the lattice join forces \ations to be additive. |
begin by considering a very special case depicted in Figef® @f two elementx and
y with join xVvy and a null meekAy = L (not shown). The value assigned to the join
XVYy, written u(xVy), must be a function of the values assigned to boémdy, u(x)
andu(y), since if there did not exist any functional relationshign the valuation could
not possibly reflect the underlying lattice structure. Tiaisctional relationship can be
written in terms of an unknown binary operater

u(xvy) = u(x) e u(y). (5)

Now consider another case where we have three elemegfsandz, such that their
meets are again disjoint. The least upper bound of these #éheenents can be written in
at least two different waysV (yV z) and(xVy) Vv z. Consequently, the value assigned to
this join can also be written in two different ways

u(x) & (u(y) ®u(z)) = (u(x) &u(y)) & u(2). (6)
This functional equation for the operaterhas a general solution given by Aczel [15]
fFlu(xvy)) = f(u(x)) + f(uly)), (7)

wheref is an arbitrary invertible function. We take advantage of freedom to choose
a valuationv(x) = f(u(x)) that simplifies this constraint

V(XVY) = V(X) +V(Y). (8)



By lettingx = L, equation (8) implies that( L) = 0.

We now seek a solution for the general case. Consider thedatt Figure 3 (center)
and note that the elements\y andz have a null meet, as do the elemertand z.
Applying (8) to these two cases, we get

v(y) = V(XAY)+V(Z) (9)
V(XVy) = V(X)+V(2) (10)

Simple substitution results in the general constraint 8gn&nown as thesum rule
V(XVY) = V(X) +V(y) — V(XAY). (11)
In general for bi-valuations we have
W(XVY | t) =w(X]|t)+w(y|t) —w(XAY|t). (12)

for any context. Note that the sum rule is not focused solely on joins since sym-
metric with respect to interchange of joins and meets. Thahis result simultaneously
respects associativity of the lattice join and the lattiasem

We havederivedthat associativity constrains us to additive valuationsere¢ is no
other option. The cartoon at the right of Fig. 3 illustrates $ymmetry of the sum rule.
The sum of the valuations of the elements at the top and batfdhe diamond equals
the sum of the valuations of the elements on the right andigés

V(XVY) +V(XAY) = V(X) + V(Y). (13)

The Lattice Product

One can combine two lattices via the lattice product whezenehts themselves are
combined in as in a Cartesian product. That is, the produatlafticeX with a lattice
Y will result in a latticeX x Y with elements of the fornix,y), wherex € X andy €Y.
The lattice product is associative, so that for three lai¢, Y, andZ, we have

(XxXY)xZ=Xx(YxZ) (14)

with elements of the fornix,y, z).

The valuation assigned to an elemént) clearly must be a function of the valuations
assigned tx andy in their respective original lattices. Again, associayiwill require
that they are combined in an additive fashion

g(u((x,y))) = g(u(x)) +g(u(y)), (15)

whereg is an arbitrary function.

In some cases, such as in probability theory, we expect mdsity of the lattice
product to hold simultaneously with associativity of thigite join within a given lattice.
Given the linearity of the constraint imposed by assodigtof lattice join (13), the only



remaining freedom is that of rescaling. This means that artiiér constraints must have
a multiplicative form. The result is that the valuation gssid to an element formed by
a lattice product is given by

V((x,Y)) = v(X)v(y), (16)
which is aproduct ruleapplicable to combining lattices.

The Chain Rule

We now focus on bi-valuations and explore changes in con@xinges in context
are again associative, which again results in an additinstcaint.

We begin with the special case of a chain and consider fowsreddelements <
y < z < t. The relationshipx < z can be divided into two relationg, <y andy < z
By consideringz to be the context, this sub-division implies that the conhtan be
considered in parts. Thus the bi-valuation we assigx teith respect to context,
w(X | z), must be related to both the bi-valuation assignexiwath respect to context,
w(x | y), and the bi-valuation assigned yowith respect to context, w(y | z). That is,
there exists a binary operaterthat relates the bi-valuations assigned to the two steps
to the bi-valuation assigned to the one step

W(x|2) =w(x|y) Ow(y|2). (17)

Extending this to three steps (Fig. 4A) and considering thealuationw(x | t) relating
x andt, via intermediate contexgsandz, we obtain another associative relationship

(Wx|y) ow(y | 2)) ow(z|t) =w(x|y) © (W(y | 2) ©w(z]1)) (18)

Using the associativity theorem again results in a comgtequation for non-negative
bi-valuations involving changes in context [16]. We calktthechain rule

W(X | 2) =w(x | y)w(y|2). (19)

This result can be extended by considering the followingtemThe sum rule applied
to the diamond in Fig. 4B defined byy, xVy, andx Ay with contextx gives

WX | X) +W(y | X) = W(XVy | X) +W(XAY | X). (20)
Sincex < xandx < xVy, we havew(x | X) = w(xVy | X) = 1, reducing the sum rule to
W(Y [ X) = W(XAY [ X). (21)

This relationship, illustrated by the equivalence of theowas in Fig. 4B, will used
several times in the derivation that follows.

We now consider the more general lattice in Fig. 4C and focuthe chain along the
lower left side. Using the chain rule, we decompose the hiationw(xAyAz| X) with
contextx into two parts by introducing the intermediate contexty

W(XAYAZ|X) = W(XAYAZ| XAY)W(XAY | X). (22)
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FIGURE 4. (A) Associativity of context is used to derive the chain tu8) The diamond illustrates

that the degree to whickincludesxAy equals the degree to whictincludesy, w(y | X) = W(XAY | X).
(C) The lemma in panel B is used repeatedly to transform theatule into the usual product rule.

We apply the lemma to the diamond defineddayy Az, xAY, YAz, z (Fig. 4C, center)
to obtain
W(XAYAZ|XAY) =W(Z| XAY). (23)

Similarly, the diamond defined by xAy, yAz andxAyAz (Fig. 4C, right) results in
W(XAYAZ|X) =W(YAZ]|X). (24)
Substituting (21),(23), and (24) into (22) results in greduct rulefor context change.
W(YAZ|X) = W(Z[ XAY)W(Y | X). (25)

The Valuation Calculus

We have derived that associativity of the lattice join réesir the sum rule
V(XVY) +V(XAY) = V(X) +V(Y), (26)

which is a central axiom of measure theory. Associativitihef lattice product imposes
an additional constraint, which results in a product rule

v((xy)) = v(x)v(y)- (27)

Extending the concept of valuation to that of a context-dejeat bi-valuation, we
obtain a sum rule

W(XVY|[t) +W(XAY|t) =w(X|t)+w(y|t), (28)
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FIGURES. (A) The projection of an eventonto a chain is the least event on the chain that inclades
(B) In this poset, elemenisandy are quantifiable by the chai? whereas elemeutis not. The number of
distinct quantifiable classes of elements is given by thebrrrof top elements of the poset. (C) Multiple
chains can be used to quantify poset elements. Here the migisejuantified by the numeric p&ipx, dx)-

a product rule for combining spaces
W((X,Y) | (txty)) = WX | tow(y [ ty), (29)
and a product rule for context change
W(YAZ[X) =W(Z| XAY)W(Y | X). (30)

The valuation calculus differs from traditional measuredtty in two important ways.

First, additivity is not postulated, but rather is derivedni associativity. Second, the
valuation calculus generalizes measure theory by intrioduthe concept of context,
which is quantified using bi-valuations and manipulateshgighe product rule. These
rules are constraint equations ensuring that the assigaledtions respect the order-
theoretic properties of the lattice.

Proj ections

The previous sections describe the consistent quantdicafilattices, which is made
possible by the fact that lattices possess extra strudtatatiows one to define a unique
join and meet of each pair of elements thus making it an algébis precisely this extra
structure that constrains any proposed quantificationrsehga the sum and product
rules. However, such constraints do not apply to posets ermgé since they lack this
extra structure possessed by lattices.

Consistent quantification of a poset can proceed by arlificiamposing additional
lattice-like structure. One way to do this is to seledistinguished a set of elememts
the poset that form a lattice, and attempt to relate the r@mgelements in the poset to
the elements of thidistinguished setWe have recently demonstrated this quantification
technique by selecting one or more chains as the distingdisét (or sets) amfojecting
poset elements onto the chains [12]. In general, it may nqidssible to quantify all
poset elements in this way, but here we show that one carirdgrtmantify a subset of
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FIGURE 6. (A) Chains can be synchronized by selecting quantifyingnelets such that successive
elements on one chain project to successive elements oritbe and vice versa. (B) This illustrates a
method to quantify an interval between two poset elementgeiisas its decomposition into a symmetric
(chain-like) part and an anti-symmetric (antichain-likgrt. Chain-like relationships are analogous to
time-like relationships; whereas antichain-like relatihips are analogous to space-like relationships.

the elements. Surprisingly, this proposed quantificatahreme results in the Minkowski
metric and Lorentz transformations [12].

Coordinates

First we consider quantification using a single chain. Wede chairP to be used
for quantification and label its elements withn a finite poset, such a chain is described
bypr <p2<...<pi <...pn. Inaninfinite poset where the chain is countably infinite
the labeli can be any integer and the chain is described by pi_1 < pi < piz1<....

If the chain is uncountably infinite, a real number index carubed.

An elemenix can be projected onto a chdmif there exists an elemeipte P such that
x < p. If this is the case, then th@rojectionof x onto the chairP is given by the least
elementpy on the chainP such thatx < px. If one considers the sub-poset consisting
only of the elemenk and the elements comprising the ch&pnthen in this sub-poset
px coversx, px > X (Fig. 5A). If the projection exists, we say thats quantifiablewith
respect td?, and assign to the elementhe numeric label assigned to the elemgnt P.
Note that, in general, not all elements of a poset are qualnligfiwith respect to a given
chain. Any chain potentially divides the poset into two sks elements quantifiable
with respect to the chain and elements not quantifiable veisipect to the chain (Fig.
5B). Thus, one can only be assured to quantify some subde¢ gidset.

One can project to N different chains and use the correspgnalimeric labels to
coordinatizethe poset elements that are quantifiable with respect toaable selected
chains with numbers taken as a Cartesian product (Fig. 5C).



Intervals

Theinterval between two poset elements can be quantified using two cliEiese
chains must beynchronizedo that successive events in one chain project to successive
events in the other chain (Fig. 6A). Figure 6B illustrates gmantification of an interval
given by (Ap,Aq) whereAp = p, — p1 andAq = g2 — ;. This pair-wise quantification
can be decomposed into the sum of a symmetric and an antislyromair [12] given
by

Ap+Agq Ap+Aq Ap—Aq Ag—Ap

The two integer labels can be used to obtain a single scdiarigdone by taking the
lattice product of the two chains, which, as we saw earlesults in a valuation found
by taking the product of the two original valuations, so that

(31)

AS® = ApAq. (32)

By defining

a = BP7AA (33)

ax — BP—Ad (34)

2

we can rewrite the pair as
and the scalar as

AS® = At? — A2 (36)

This is the Minkowski metric, familiar from special relatiy, and here it arises from a
simple method for quantifying a poset [12]. This is not a cadence. Our recent paper
demonstrates that the scalar intendaf is invariant when computed with respect to
any synchronized pair of chains. In addition, the paramseierand Ax are shown to
transform according to the Lorentz transformations of tand space.

It should be noted that such a consistent decomposition @iftarval is not always
possible given more than two synchronized chains [12], &atlthis is related to the
multi-dimensionality of space.

APPLICATIONS

Itis not possible in this tutorial to cover the applicatiaiesived using this methodology
in requisite detail. For this reason, | will simply outlinket basic applications and
point to appropriate references. Since these quantificédichniques are applicable to a
wide array of posets and lattices, we can expect that théybwitelevant to numerous
applications. At this point, we have five examples where weltkerived a theory from
first principles based on quantifying posets and lattices.



The most general of these applications, measure theonphdes discussed here as
the derivation of the valuation calculus and the relateddbirations. The valuation cal-
culus both encompasses and extends traditional measworg.tAeditivity of measures,
which is an axiom of measure theory is derived here as a caeseg of associativity.
Furthermore, the valuation calculus generalizes meakeagy by introducing the con-
cept of context. A valuation with respect to a context is dtfi@a using bi-valuations
and manipulated using the product rule. Earlier works disig these results can be
found here [13, 14].

The second example, which was the original inspirationticgrwork is the derivation
of probability theory [13, 17, 18, 14]. By founding probatyiltheory as a quantification
of implication among logical statements, we obtain a thethigt encompasses and
generalizes both the Cox and Kolmogorov formulations. Byoithucing probability
as a bi-valuation defined on a lattice of statements we camtifydhe degree to
which one statement implies another. Rather than deriviodability theory from a
set of desiderata derived from Cox’s particular notion cduglbility, the properties
of the lattice of statements form the basis of the theorytHeumore, themeaning
of the derived measure is inherited from the ordering r@htiwhich in this case is
implication. The fact that these lattices are derived fragts sneans that this work
encompasses Kolmogorov’'s formulation of probability tlyeas a measure on sets.
However, mathematically this theory improves on Kolmogtséoundation by not only
deriving rather than assuming, additivity of the measure, but ajsotsoducing the
concept of context and endowing the measure with meaning.

The third example involves the derivation of informatioediny as a valuation on the
partition subspace of questions. The space of questiorsnisrgted from the space of
statements by virtue of Birkhoff's Representation Theof&8]. The result is the free
distributive lattice of questions, which by virtue of itsibg a lattice imposes a sum
rule and a product rule. By postulating that the relevanca gfiestion is a function
of the probabilities that answer it, we couple the probgbitheasure on the statement
space with the relevance measure on the question spaceo Buenflict of constraints,
to be discussed in more detail in a future work, one can shaivah objective non-
trivial measure can be defined only on the subspace of questi@t are isomorphic
to partitions. The result is that the most basic relevancasmes are quantified by the
Shannon entropy of the set of assertions that potentiabywanthe question. The sum
rule, when relating partitions, results in a relationshéween mutual information and
joint entropy

I(A;B)=H(A)+H(B)—H(A,B). (37)

The result is not only a novel derivation of information thgdut a natural extension
of the theory to include the relevance of a question quadtifigh respect to a given
context [19, 20, 18].

Deriving mathematical theories is one thing, but derivilnggical theories is an an-
other thing altogether. The first such example is a derigadiothe complex sum and
product rules of the Feynman formulation of quantum meds®fiiO, 11]. This was
achieved by considering a pair-wise valuation on the spasequences of measure-
ments. The logic of the process of measuring served to gengr@algebra, which im-
plicitly defines a poset of measurement sequences. By canglimeasurements in two



ways: parallel and serial, which correspond to the latbge §nd the lattice product, and
mapping the pair-wise valuation to a scalar-valued prditgbive obtain the complex
sum and product rule along with the Born rule, which maps airwise valuation to a
scalar-valued probability [10, 11].

The most recent application has been a derivation of spegt&lvity as a quantifica-
tion of a poset of causally related events [12]. As discusdexle, this is achieved by
distinguishing two chains of elements (events) as obsgered projecting events onto
the observer chains. The result is that intervals are diightdy a pair of numbers and
that this pair maps to a unique scalar, which gives rise tdvtmkowski metric. What
Is strange is that in this picture space and time emerge dsngomnore than a conve-
nient decomposition, which along with other results, sjigrsuggests that they are not
fundamental.

CONCLUSION

In his derivation of probability theory Cox provided the fiexample of generalizing
an algebra to a calculus [2]. That such an activity is gehepalssible or even useful is
not obvious until one begins to notice the great many siitigsrbetween a variety of
mathematical theories and physical laws, such as the wingarnations of the sum rule
or the fact that quantum mechanics looks like a complex @arsf probability theory.
As Jaynes recognized, it is not a matter of simple analogyaber something far more
subtle. The theories are similar becatise ideas that lead to the theories are similar
These ideas are based on the quantification of order.

In this tutorial, | have shown how a variety of rules involgiquantification arise as
constraint equations to ensure that any quantification doéwiolate the underlying
order. What is more striking is that this entire procedurkadsed on the quantification
of order underlying our descriptions of physical realityetnecessarily physical reality
itself. The consequence is that the physical laws we obtaio@nstraints on quantifica-
tion imposed by our descriptions. This is where we arrivenfidrmation Physics.

At the heart of this new methodology lies the valuation clalswhich is applicable to
any lattice. Associativity of the lattice join (or meet) gi/rise to the sum rule. Associa-
tivity of the lattice product results in a product rule, windictates how valuations are to
be combined when taking lattice products. Associativitgltdnges of context resultin a
product rule for bi-valuations that dictates how valuasishould be manipulated when
changing context. The techniques based on projectionsasedbon distinguishing a
sub-lattice that can be used to employ valuations to queatfoset in general.

Most exciting is the range of theories that have been suftdsderived using this
foundation: measure theory, probability theory, inforimatheory, quantum mechanics,
and special relativity. These results provide strong stgpothe claim that Information
Physics, which relies on information about our descrigiofreality to derive physical
laws, is a potentially useful general approach. With thesstpe examples as guide-
posts, we now aim to use these techniques to quantify newemmsband derive new
physical laws.
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